forked from xiaozhi/xiaozhi-esp32
* feat: 添加声波配网, 需调整application的ReadAudio公有, 需添加条件编译, 位于'afsk_demod.h'内定义参数 * mod: afsk的重构,旨在提高代码可读性并遵循Google C++代码风格指南 * mod: 更新依赖esp-wifi-connect需求版号 * feat: 添加声波配网, 需调整application的ReadAudio公有, 需添加条件编译, 位于'afsk_demod.h'内定义参数 * mod: afsk的重构,旨在提高代码可读性并遵循Google C++代码风格指南 * mod: 更新依赖esp-wifi-connect需求版号 * mod: 添加判断只有在WiFi配置模式下才会调用ReadAudio, 否则delay(联网成功重启后该任务不会被启动) * add: 添加USE_ACOUSTIC_WIFI_PROVISIONING进MENU开关声波配网功能 --------- Co-authored-by: yangkaiyue <yangkaiyue1@tenclass.com>
411 lines
17 KiB
C++
411 lines
17 KiB
C++
#include "afsk_demod.h"
|
||
#include <cstring>
|
||
#include <algorithm>
|
||
#include "esp_log.h"
|
||
|
||
#ifndef M_PI
|
||
#define M_PI 3.14159265358979323846
|
||
#endif
|
||
|
||
namespace audio_wifi_config
|
||
{
|
||
static const char *kLogTag = "AUDIO_WIFI_CONFIG";
|
||
|
||
void ReceiveWifiCredentialsFromAudio(Application *app,
|
||
WifiConfigurationAp *wifi_ap)
|
||
{
|
||
const int kInputSampleRate = 16000; // Input sampling rate
|
||
const float kDownsampleStep = static_cast<float>(kInputSampleRate) / static_cast<float>(kAudioSampleRate); // Downsampling step
|
||
std::vector<int16_t> audio_data;
|
||
AudioSignalProcessor signal_processor(kAudioSampleRate, kMarkFrequency, kSpaceFrequency, kBitRate, kWindowSize);
|
||
AudioDataBuffer data_buffer;
|
||
|
||
while (true)
|
||
{
|
||
// 检查Application状态,只有在WiFi配置模式下才处理音频
|
||
if (app->GetDeviceState() != kDeviceStateWifiConfiguring) {
|
||
// 不在WiFi配置状态,休眠100ms后再检查
|
||
vTaskDelay(pdMS_TO_TICKS(100));
|
||
continue;
|
||
}
|
||
|
||
if (!app->ReadAudio(audio_data, 16000, 480)) { // 16kHz, 480 samples corresponds to 30ms data
|
||
// 读取音频失败,短暂延迟后重试
|
||
ESP_LOGI(kLogTag, "Failed to read audio data, retrying.");
|
||
vTaskDelay(pdMS_TO_TICKS(10));
|
||
continue;
|
||
}
|
||
|
||
// Downsample the audio data
|
||
std::vector<float> downsampled_data;
|
||
size_t last_index = 0;
|
||
|
||
if (kDownsampleStep > 1.0f)
|
||
{
|
||
downsampled_data.reserve(audio_data.size() / static_cast<size_t>(kDownsampleStep));
|
||
for (size_t i = 0; i < audio_data.size(); ++i)
|
||
{
|
||
size_t sample_index = static_cast<size_t>(i / kDownsampleStep);
|
||
if ((sample_index + 1) > last_index)
|
||
{
|
||
downsampled_data.push_back(static_cast<float>(audio_data[i]));
|
||
last_index = sample_index + 1;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
downsampled_data.reserve(audio_data.size());
|
||
for (int16_t sample : audio_data)
|
||
{
|
||
downsampled_data.push_back(static_cast<float>(sample));
|
||
}
|
||
}
|
||
|
||
// Process audio samples to get probability data
|
||
auto probabilities = signal_processor.ProcessAudioSamples(downsampled_data);
|
||
|
||
// Feed probability data to the data buffer
|
||
if (data_buffer.ProcessProbabilityData(probabilities, 0.5f))
|
||
{
|
||
// If complete data was received, extract WiFi credentials
|
||
if (data_buffer.decoded_text.has_value())
|
||
{
|
||
ESP_LOGI(kLogTag, "Received text data: %s", data_buffer.decoded_text->c_str());
|
||
|
||
// Split SSID and password by newline character
|
||
std::string wifi_ssid, wifi_password;
|
||
size_t newline_position = data_buffer.decoded_text->find('\n');
|
||
if (newline_position != std::string::npos)
|
||
{
|
||
wifi_ssid = data_buffer.decoded_text->substr(0, newline_position);
|
||
wifi_password = data_buffer.decoded_text->substr(newline_position + 1);
|
||
ESP_LOGI(kLogTag, "WiFi SSID: %s, Password: %s", wifi_ssid.c_str(), wifi_password.c_str());
|
||
}
|
||
else
|
||
{
|
||
ESP_LOGE(kLogTag, "Invalid data format, no newline character found");
|
||
continue;
|
||
}
|
||
|
||
if (wifi_ap->ConnectToWifi(wifi_ssid, wifi_password))
|
||
{
|
||
wifi_ap->Save(wifi_ssid, wifi_password); // Save WiFi credentials
|
||
esp_restart(); // Restart device to apply new WiFi configuration
|
||
}
|
||
else
|
||
{
|
||
ESP_LOGE(kLogTag, "Failed to connect to WiFi with received credentials");
|
||
}
|
||
data_buffer.decoded_text.reset(); // Clear processed data
|
||
}
|
||
}
|
||
vTaskDelay(pdMS_TO_TICKS(1)); // 1ms delay
|
||
}
|
||
}
|
||
|
||
// Default start and end transmission identifiers
|
||
// \x01\x02 = 00000001 00000010
|
||
const std::vector<uint8_t> kDefaultStartTransmissionPattern = {
|
||
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0};
|
||
|
||
// \x03\x04 = 00000011 00000100
|
||
const std::vector<uint8_t> kDefaultEndTransmissionPattern = {
|
||
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0};
|
||
|
||
// FrequencyDetector implementation
|
||
FrequencyDetector::FrequencyDetector(float frequency, size_t window_size)
|
||
: frequency_(frequency), window_size_(window_size)
|
||
{
|
||
frequency_bin_ = std::floor(frequency_ * static_cast<float>(window_size_));
|
||
angular_frequency_ = 2.0f * M_PI * frequency_;
|
||
cos_coefficient_ = std::cos(angular_frequency_);
|
||
sin_coefficient_ = std::sin(angular_frequency_);
|
||
filter_coefficient_ = 2.0f * cos_coefficient_;
|
||
|
||
// Initialize state buffer
|
||
state_buffer_.push_back(0.0f);
|
||
state_buffer_.push_back(0.0f);
|
||
}
|
||
|
||
void FrequencyDetector::Reset()
|
||
{
|
||
state_buffer_.clear();
|
||
state_buffer_.push_back(0.0f);
|
||
state_buffer_.push_back(0.0f);
|
||
}
|
||
|
||
void FrequencyDetector::ProcessSample(float sample)
|
||
{
|
||
if (state_buffer_.size() < 2)
|
||
{
|
||
return;
|
||
}
|
||
|
||
float s_minus_2 = state_buffer_.front(); // S[-2]
|
||
state_buffer_.pop_front();
|
||
float s_minus_1 = state_buffer_.front(); // S[-1]
|
||
state_buffer_.pop_front();
|
||
|
||
float s_current = sample + filter_coefficient_ * s_minus_1 - s_minus_2;
|
||
|
||
state_buffer_.push_back(s_minus_1); // Put S[-1] back
|
||
state_buffer_.push_back(s_current); // Add new S[0]
|
||
}
|
||
|
||
float FrequencyDetector::GetAmplitude() const
|
||
{
|
||
if (state_buffer_.size() < 2)
|
||
{
|
||
return 0.0f;
|
||
}
|
||
|
||
float s_minus_1 = state_buffer_[1]; // S[-1]
|
||
float s_minus_2 = state_buffer_[0]; // S[-2]
|
||
float real_part = cos_coefficient_ * s_minus_1 - s_minus_2; // Real part
|
||
float imaginary_part = sin_coefficient_ * s_minus_1; // Imaginary part
|
||
|
||
return std::sqrt(real_part * real_part + imaginary_part * imaginary_part) /
|
||
(static_cast<float>(window_size_) / 2.0f);
|
||
}
|
||
|
||
// AudioSignalProcessor implementation
|
||
AudioSignalProcessor::AudioSignalProcessor(size_t sample_rate, size_t mark_frequency, size_t space_frequency,
|
||
size_t bit_rate, size_t window_size)
|
||
: input_buffer_size_(window_size), output_sample_count_(0)
|
||
{
|
||
if (sample_rate % bit_rate != 0)
|
||
{
|
||
// On ESP32 we can continue execution, but log the error
|
||
ESP_LOGW(kLogTag, "Sample rate %zu is not divisible by bit rate %zu", sample_rate, bit_rate);
|
||
}
|
||
|
||
float normalized_mark_freq = static_cast<float>(mark_frequency) / static_cast<float>(sample_rate);
|
||
float normalized_space_freq = static_cast<float>(space_frequency) / static_cast<float>(sample_rate);
|
||
|
||
mark_detector_ = std::make_unique<FrequencyDetector>(normalized_mark_freq, window_size);
|
||
space_detector_ = std::make_unique<FrequencyDetector>(normalized_space_freq, window_size);
|
||
|
||
samples_per_bit_ = sample_rate / bit_rate; // Number of samples per bit
|
||
}
|
||
|
||
std::vector<float> AudioSignalProcessor::ProcessAudioSamples(const std::vector<float> &samples)
|
||
{
|
||
std::vector<float> result;
|
||
|
||
for (float sample : samples)
|
||
{
|
||
if (input_buffer_.size() < input_buffer_size_)
|
||
{
|
||
input_buffer_.push_back(sample); // Just add, don't process yet
|
||
}
|
||
else
|
||
{
|
||
// Input buffer is full, process the data
|
||
input_buffer_.pop_front(); // Remove oldest sample
|
||
input_buffer_.push_back(sample); // Add new sample
|
||
output_sample_count_++;
|
||
|
||
if (output_sample_count_ >= samples_per_bit_)
|
||
{
|
||
// Process all samples in the window using Goertzel algorithm
|
||
for (float window_sample : input_buffer_)
|
||
{
|
||
mark_detector_->ProcessSample(window_sample);
|
||
space_detector_->ProcessSample(window_sample);
|
||
}
|
||
|
||
float mark_amplitude = mark_detector_->GetAmplitude(); // Mark amplitude
|
||
float space_amplitude = space_detector_->GetAmplitude(); // Space amplitude
|
||
|
||
// Avoid division by zero
|
||
float mark_probability = mark_amplitude /
|
||
(space_amplitude + mark_amplitude + std::numeric_limits<float>::epsilon());
|
||
result.push_back(mark_probability);
|
||
|
||
// Reset detector windows
|
||
mark_detector_->Reset();
|
||
space_detector_->Reset();
|
||
output_sample_count_ = 0; // Reset output counter
|
||
}
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
// AudioDataBuffer implementation
|
||
AudioDataBuffer::AudioDataBuffer()
|
||
: current_state_(DataReceptionState::kInactive),
|
||
start_of_transmission_(kDefaultStartTransmissionPattern),
|
||
end_of_transmission_(kDefaultEndTransmissionPattern),
|
||
enable_checksum_validation_(true)
|
||
{
|
||
identifier_buffer_size_ = std::max(start_of_transmission_.size(), end_of_transmission_.size());
|
||
max_bit_buffer_size_ = 776; // Preset bit buffer size, 776 bits = (32 + 1 + 63 + 1) * 8 = 776
|
||
|
||
bit_buffer_.reserve(max_bit_buffer_size_);
|
||
}
|
||
|
||
AudioDataBuffer::AudioDataBuffer(size_t max_byte_size, const std::vector<uint8_t> &start_identifier,
|
||
const std::vector<uint8_t> &end_identifier, bool enable_checksum)
|
||
: current_state_(DataReceptionState::kInactive),
|
||
start_of_transmission_(start_identifier),
|
||
end_of_transmission_(end_identifier),
|
||
enable_checksum_validation_(enable_checksum)
|
||
{
|
||
identifier_buffer_size_ = std::max(start_of_transmission_.size(), end_of_transmission_.size());
|
||
max_bit_buffer_size_ = max_byte_size * 8; // Bit buffer size in bytes
|
||
|
||
bit_buffer_.reserve(max_bit_buffer_size_);
|
||
}
|
||
|
||
uint8_t AudioDataBuffer::CalculateChecksum(const std::string &text)
|
||
{
|
||
uint8_t checksum = 0;
|
||
for (char character : text)
|
||
{
|
||
checksum += static_cast<uint8_t>(character);
|
||
}
|
||
return checksum;
|
||
}
|
||
|
||
void AudioDataBuffer::ClearBuffers()
|
||
{
|
||
identifier_buffer_.clear();
|
||
bit_buffer_.clear();
|
||
}
|
||
|
||
bool AudioDataBuffer::ProcessProbabilityData(const std::vector<float> &probabilities, float threshold)
|
||
{
|
||
for (float probability : probabilities)
|
||
{
|
||
uint8_t bit = (probability > threshold) ? 1 : 0;
|
||
|
||
if (identifier_buffer_.size() >= identifier_buffer_size_)
|
||
{
|
||
identifier_buffer_.pop_front(); // Maintain buffer size
|
||
}
|
||
identifier_buffer_.push_back(bit);
|
||
|
||
// Process received bit based on state machine
|
||
switch (current_state_)
|
||
{
|
||
case DataReceptionState::kInactive:
|
||
if (identifier_buffer_.size() >= start_of_transmission_.size())
|
||
{
|
||
current_state_ = DataReceptionState::kWaiting; // Enter waiting state
|
||
ESP_LOGI(kLogTag, "Entering Waiting state");
|
||
}
|
||
break;
|
||
|
||
case DataReceptionState::kWaiting:
|
||
// Waiting state, possibly waiting for transmission end
|
||
if (identifier_buffer_.size() >= start_of_transmission_.size())
|
||
{
|
||
std::vector<uint8_t> identifier_snapshot(identifier_buffer_.begin(), identifier_buffer_.end());
|
||
if (identifier_snapshot == start_of_transmission_)
|
||
{
|
||
ClearBuffers(); // Clear buffers
|
||
current_state_ = DataReceptionState::kReceiving; // Enter receiving state
|
||
ESP_LOGI(kLogTag, "Entering Receiving state");
|
||
}
|
||
}
|
||
break;
|
||
|
||
case DataReceptionState::kReceiving:
|
||
bit_buffer_.push_back(bit);
|
||
if (identifier_buffer_.size() >= end_of_transmission_.size())
|
||
{
|
||
std::vector<uint8_t> identifier_snapshot(identifier_buffer_.begin(), identifier_buffer_.end());
|
||
if (identifier_snapshot == end_of_transmission_)
|
||
{
|
||
current_state_ = DataReceptionState::kInactive; // Enter inactive state
|
||
|
||
// Convert bits to bytes
|
||
std::vector<uint8_t> bytes = ConvertBitsToBytes(bit_buffer_);
|
||
|
||
uint8_t received_checksum = 0;
|
||
size_t minimum_length = 0;
|
||
|
||
if (enable_checksum_validation_)
|
||
{
|
||
// If checksum is required, last byte is checksum
|
||
minimum_length = 1 + start_of_transmission_.size() / 8;
|
||
if (bytes.size() >= minimum_length)
|
||
{
|
||
received_checksum = bytes[bytes.size() - start_of_transmission_.size() / 8 - 1];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
minimum_length = start_of_transmission_.size() / 8;
|
||
}
|
||
|
||
if (bytes.size() < minimum_length)
|
||
{
|
||
ClearBuffers();
|
||
ESP_LOGW(kLogTag, "Data too short, clearing buffer");
|
||
return false; // Data too short, return failure
|
||
}
|
||
|
||
// Extract text data (remove trailing identifier part)
|
||
std::vector<uint8_t> text_bytes(
|
||
bytes.begin(), bytes.begin() + bytes.size() - minimum_length);
|
||
|
||
std::string result(text_bytes.begin(), text_bytes.end());
|
||
|
||
// Validate checksum if required
|
||
if (enable_checksum_validation_)
|
||
{
|
||
uint8_t calculated_checksum = CalculateChecksum(result);
|
||
if (calculated_checksum != received_checksum)
|
||
{
|
||
// Checksum mismatch
|
||
ESP_LOGW(kLogTag, "Checksum mismatch: expected %d, got %d",
|
||
received_checksum, calculated_checksum);
|
||
ClearBuffers();
|
||
return false;
|
||
}
|
||
}
|
||
|
||
ClearBuffers();
|
||
decoded_text = result;
|
||
return true; // Return success
|
||
}
|
||
else if (bit_buffer_.size() >= max_bit_buffer_size_)
|
||
{
|
||
// If not end identifier and bit buffer is full, reset
|
||
ClearBuffers();
|
||
ESP_LOGW(kLogTag, "Buffer overflow, clearing buffer");
|
||
current_state_ = DataReceptionState::kInactive; // Reset state machine
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
std::vector<uint8_t> AudioDataBuffer::ConvertBitsToBytes(const std::vector<uint8_t> &bits) const
|
||
{
|
||
std::vector<uint8_t> bytes;
|
||
|
||
// Ensure number of bits is a multiple of 8
|
||
size_t complete_bytes_count = bits.size() / 8;
|
||
bytes.reserve(complete_bytes_count);
|
||
|
||
for (size_t i = 0; i < complete_bytes_count; ++i)
|
||
{
|
||
uint8_t byte_value = 0;
|
||
for (size_t j = 0; j < 8; ++j)
|
||
{
|
||
byte_value |= bits[i * 8 + j] << (7 - j);
|
||
}
|
||
bytes.push_back(byte_value);
|
||
}
|
||
|
||
return bytes;
|
||
}
|
||
} |