Files
xiaozhi-esp32/scripts/build_default_assets.py
2025-09-16 19:05:28 +08:00

827 lines
30 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Build default assets based on configuration
This script reads configuration from sdkconfig and builds the appropriate assets.bin
for the current board configuration.
Usage:
./build_default_assets.py --sdkconfig <path> --builtin_text_font <font_name> \
--default_emoji_collection <collection_name> --output <output_path>
"""
import argparse
import io
import os
import shutil
import sys
import json
import struct
import math
from pathlib import Path
from datetime import datetime
# =============================================================================
# Pack model functions (from pack_model.py)
# =============================================================================
def struct_pack_string(string, max_len=None):
"""
pack string to binary data.
if max_len is None, max_len = len(string) + 1
else len(string) < max_len, the left will be padded by struct.pack('x')
"""
if max_len == None :
max_len = len(string)
else:
assert len(string) <= max_len
left_num = max_len - len(string)
out_bytes = None
for char in string:
if out_bytes == None:
out_bytes = struct.pack('b', ord(char))
else:
out_bytes += struct.pack('b', ord(char))
for i in range(left_num):
out_bytes += struct.pack('x')
return out_bytes
def read_data(filename):
"""Read binary data, like index and mndata"""
data = None
with open(filename, "rb") as f:
data = f.read()
return data
def pack_models(model_path, out_file="srmodels.bin"):
"""
Pack all models into one binary file by the following format:
{
model_num: int
model1_info: model_info_t
model2_info: model_info_t
...
model1_index,model1_data,model1_MODEL_INFO
model1_index,model1_data,model1_MODEL_INFO
...
}model_pack_t
{
model_name: char[32]
file_number: int
file1_name: char[32]
file1_start: int
file1_len: int
file2_name: char[32]
file2_start: int // data_len = info_start - data_start
file2_len: int
...
}model_info_t
"""
models = {}
file_num = 0
model_num = 0
for root, dirs, _ in os.walk(model_path):
for model_name in dirs:
models[model_name] = {}
model_dir = os.path.join(root, model_name)
model_num += 1
for _, _, files in os.walk(model_dir):
for file_name in files:
file_num += 1
file_path = os.path.join(model_dir, file_name)
models[model_name][file_name] = read_data(file_path)
model_num = len(models)
header_len = 4 + model_num*(32+4) + file_num*(32+4+4)
out_bin = struct.pack('I', model_num) # model number
data_bin = None
for key in models:
model_bin = struct_pack_string(key, 32) # + model name
model_bin += struct.pack('I', len(models[key])) # + file number in this model
for file_name in models[key]:
model_bin += struct_pack_string(file_name, 32) # + file name
if data_bin == None:
model_bin += struct.pack('I', header_len)
data_bin = models[key][file_name]
model_bin += struct.pack('I', len(models[key][file_name]))
else:
model_bin += struct.pack('I', header_len+len(data_bin))
data_bin += models[key][file_name]
model_bin += struct.pack('I', len(models[key][file_name]))
out_bin += model_bin
assert len(out_bin) == header_len
if data_bin != None:
out_bin += data_bin
out_file = os.path.join(model_path, out_file)
with open(out_file, "wb") as f:
f.write(out_bin)
# =============================================================================
# Build assets functions (from build.py)
# =============================================================================
def ensure_dir(directory):
"""Ensure directory exists, create if not"""
os.makedirs(directory, exist_ok=True)
def copy_file(src, dst):
"""Copy file"""
if os.path.exists(src):
shutil.copy2(src, dst)
print(f"Copied: {src} -> {dst}")
return True
else:
print(f"Warning: Source file does not exist: {src}")
return False
def copy_directory(src, dst):
"""Copy directory"""
if os.path.exists(src):
shutil.copytree(src, dst, dirs_exist_ok=True)
print(f"Copied directory: {src} -> {dst}")
return True
else:
print(f"Warning: Source directory does not exist: {src}")
return False
def process_sr_models(wakenet_model_dir, multinet_model_dirs, build_dir, assets_dir):
"""Process SR models (wakenet and multinet) and generate srmodels.bin"""
if not wakenet_model_dir and not multinet_model_dirs:
return None
# Create SR models build directory
sr_models_build_dir = os.path.join(build_dir, "srmodels")
if os.path.exists(sr_models_build_dir):
shutil.rmtree(sr_models_build_dir)
os.makedirs(sr_models_build_dir)
models_processed = 0
# Copy wakenet model if available
if wakenet_model_dir:
wakenet_name = os.path.basename(wakenet_model_dir)
wakenet_dst = os.path.join(sr_models_build_dir, wakenet_name)
if copy_directory(wakenet_model_dir, wakenet_dst):
models_processed += 1
print(f"Added wakenet model: {wakenet_name}")
# Copy multinet models if available
if multinet_model_dirs:
for multinet_model_dir in multinet_model_dirs:
multinet_name = os.path.basename(multinet_model_dir)
multinet_dst = os.path.join(sr_models_build_dir, multinet_name)
if copy_directory(multinet_model_dir, multinet_dst):
models_processed += 1
print(f"Added multinet model: {multinet_name}")
if models_processed == 0:
print("Warning: No SR models were successfully processed")
return None
# Use pack_models function to generate srmodels.bin
srmodels_output = os.path.join(sr_models_build_dir, "srmodels.bin")
try:
pack_models(sr_models_build_dir, "srmodels.bin")
print(f"Generated: {srmodels_output}")
# Copy srmodels.bin to assets directory
copy_file(srmodels_output, os.path.join(assets_dir, "srmodels.bin"))
return "srmodels.bin"
except Exception as e:
print(f"Error: Failed to generate srmodels.bin: {e}")
return None
def process_wakenet_model(wakenet_model_dir, build_dir, assets_dir):
"""Process wakenet_model parameter (legacy compatibility function)"""
return process_sr_models(wakenet_model_dir, None, build_dir, assets_dir)
def process_text_font(text_font_file, assets_dir):
"""Process text_font parameter"""
if not text_font_file:
return None
# Copy input file to build/assets directory
font_filename = os.path.basename(text_font_file)
font_dst = os.path.join(assets_dir, font_filename)
if copy_file(text_font_file, font_dst):
return font_filename
return None
def process_emoji_collection(emoji_collection_dir, assets_dir):
"""Process emoji_collection parameter"""
if not emoji_collection_dir:
return []
emoji_list = []
# Copy each image from input directory to build/assets directory
for root, dirs, files in os.walk(emoji_collection_dir):
for file in files:
if file.lower().endswith(('.png', '.gif')):
# Copy file
src_file = os.path.join(root, file)
dst_file = os.path.join(assets_dir, file)
if copy_file(src_file, dst_file):
# Get filename without extension
filename_without_ext = os.path.splitext(file)[0]
# Add to emoji list
emoji_list.append({
"name": filename_without_ext,
"file": file
})
return emoji_list
def process_extra_files(extra_files_dir, assets_dir):
"""Process default_assets_extra_files parameter"""
if not extra_files_dir:
return []
if not os.path.exists(extra_files_dir):
print(f"Warning: Extra files directory not found: {extra_files_dir}")
return []
extra_files_list = []
# Copy each file from input directory to build/assets directory
for root, dirs, files in os.walk(extra_files_dir):
for file in files:
# Skip hidden files and directories
if file.startswith('.'):
continue
# Copy file
src_file = os.path.join(root, file)
dst_file = os.path.join(assets_dir, file)
if copy_file(src_file, dst_file):
extra_files_list.append(file)
if extra_files_list:
print(f"Processed {len(extra_files_list)} extra files from: {extra_files_dir}")
return extra_files_list
def generate_index_json(assets_dir, srmodels, text_font, emoji_collection, extra_files=None, multinet_model_info=None):
"""Generate index.json file"""
index_data = {
"version": 1
}
if srmodels:
index_data["srmodels"] = srmodels
if text_font:
index_data["text_font"] = text_font
if emoji_collection:
index_data["emoji_collection"] = emoji_collection
if extra_files:
index_data["extra_files"] = extra_files
if multinet_model_info:
index_data["multinet_model"] = multinet_model_info
# Write index.json
index_path = os.path.join(assets_dir, "index.json")
with open(index_path, 'w', encoding='utf-8') as f:
json.dump(index_data, f, indent=4, ensure_ascii=False)
print(f"Generated: {index_path}")
def generate_config_json(build_dir, assets_dir):
"""Generate config.json file"""
config_data = {
"include_path": os.path.join(build_dir, "include"),
"assets_path": assets_dir,
"image_file": os.path.join(build_dir, "output", "assets.bin"),
"lvgl_ver": "9.3.0",
"assets_size": "0x400000",
"support_format": ".png, .gif, .jpg, .bin, .json",
"name_length": "32",
"split_height": "0",
"support_qoi": False,
"support_spng": False,
"support_sjpg": False,
"support_sqoi": False,
"support_raw": False,
"support_raw_dither": False,
"support_raw_bgr": False
}
# Write config.json
config_path = os.path.join(build_dir, "config.json")
with open(config_path, 'w', encoding='utf-8') as f:
json.dump(config_data, f, indent=4, ensure_ascii=False)
print(f"Generated: {config_path}")
return config_path
# =============================================================================
# Simplified SPIFFS assets generation (from spiffs_assets_gen.py)
# =============================================================================
def compute_checksum(data):
checksum = sum(data) & 0xFFFF
return checksum
def sort_key(filename):
basename, extension = os.path.splitext(filename)
return extension, basename
def pack_assets_simple(target_path, include_path, out_file, assets_path, max_name_len=32):
"""
Simplified version of pack_assets that handles basic file packing
"""
merged_data = bytearray()
file_info_list = []
skip_files = ['config.json']
# Ensure output directory exists
os.makedirs(os.path.dirname(out_file), exist_ok=True)
os.makedirs(include_path, exist_ok=True)
file_list = sorted(os.listdir(target_path), key=sort_key)
for filename in file_list:
if filename in skip_files:
continue
file_path = os.path.join(target_path, filename)
if not os.path.isfile(file_path):
continue
file_name = os.path.basename(file_path)
file_size = os.path.getsize(file_path)
file_info_list.append((file_name, len(merged_data), file_size, 0, 0))
# Add 0x5A5A prefix to merged_data
merged_data.extend(b'\x5A' * 2)
with open(file_path, 'rb') as bin_file:
bin_data = bin_file.read()
merged_data.extend(bin_data)
total_files = len(file_info_list)
mmap_table = bytearray()
for file_name, offset, file_size, width, height in file_info_list:
if len(file_name) > max_name_len:
print(f'Warning: "{file_name}" exceeds {max_name_len} bytes and will be truncated.')
fixed_name = file_name.ljust(max_name_len, '\0')[:max_name_len]
mmap_table.extend(fixed_name.encode('utf-8'))
mmap_table.extend(file_size.to_bytes(4, byteorder='little'))
mmap_table.extend(offset.to_bytes(4, byteorder='little'))
mmap_table.extend(width.to_bytes(2, byteorder='little'))
mmap_table.extend(height.to_bytes(2, byteorder='little'))
combined_data = mmap_table + merged_data
combined_checksum = compute_checksum(combined_data)
combined_data_length = len(combined_data).to_bytes(4, byteorder='little')
header_data = total_files.to_bytes(4, byteorder='little') + combined_checksum.to_bytes(4, byteorder='little')
final_data = header_data + combined_data_length + combined_data
with open(out_file, 'wb') as output_bin:
output_bin.write(final_data)
# Generate header file
current_year = datetime.now().year
asset_name = os.path.basename(assets_path)
header_file_path = os.path.join(include_path, f'mmap_generate_{asset_name}.h')
with open(header_file_path, 'w') as output_header:
output_header.write('/*\n')
output_header.write(' * SPDX-FileCopyrightText: 2022-{} Espressif Systems (Shanghai) CO LTD\n'.format(current_year))
output_header.write(' *\n')
output_header.write(' * SPDX-License-Identifier: Apache-2.0\n')
output_header.write(' */\n\n')
output_header.write('/**\n')
output_header.write(' * @file\n')
output_header.write(" * @brief This file was generated by esp_mmap_assets, don't modify it\n")
output_header.write(' */\n\n')
output_header.write('#pragma once\n\n')
output_header.write("#include \"esp_mmap_assets.h\"\n\n")
output_header.write(f'#define MMAP_{asset_name.upper()}_FILES {total_files}\n')
output_header.write(f'#define MMAP_{asset_name.upper()}_CHECKSUM 0x{combined_checksum:04X}\n\n')
output_header.write(f'enum MMAP_{asset_name.upper()}_LISTS {{\n')
for i, (file_name, _, _, _, _) in enumerate(file_info_list):
enum_name = file_name.replace('.', '_')
output_header.write(f' MMAP_{asset_name.upper()}_{enum_name.upper()} = {i}, /*!< {file_name} */\n')
output_header.write('};\n')
print(f'All files have been merged into {os.path.basename(out_file)}')
# =============================================================================
# Configuration and main functions
# =============================================================================
def read_wakenet_from_sdkconfig(sdkconfig_path):
"""
Read wakenet model from sdkconfig (based on movemodel.py logic)
Returns the wakenet model name or None if no wakenet is configured
"""
if not os.path.exists(sdkconfig_path):
print(f"Warning: sdkconfig file not found: {sdkconfig_path}")
return None
models = []
with io.open(sdkconfig_path, "r") as f:
for label in f:
label = label.strip("\n")
if 'CONFIG_SR_WN' in label and '#' not in label[0]:
if '_NONE' in label:
continue
if '=' in label:
label = label.split("=")[0]
if '_MULTI' in label:
label = label[:-6]
model_name = label.split("_SR_WN_")[-1].lower()
models.append(model_name)
# Return the first model found, or None if no models
return models[0] if models else None
def read_multinet_from_sdkconfig(sdkconfig_path):
"""
Read multinet models from sdkconfig (based on movemodel.py logic)
Returns a list of multinet model names
"""
if not os.path.exists(sdkconfig_path):
print(f"Warning: sdkconfig file not found: {sdkconfig_path}")
return []
with io.open(sdkconfig_path, "r") as f:
models_string = ''
for label in f:
label = label.strip("\n")
if 'CONFIG_SR_MN' in label and label[0] != '#':
models_string += label
models = []
if "CONFIG_SR_MN_CN_MULTINET3_SINGLE_RECOGNITION" in models_string:
models.append('mn3_cn')
elif "CONFIG_SR_MN_CN_MULTINET4_5_SINGLE_RECOGNITION_QUANT8" in models_string:
models.append('mn4q8_cn')
elif "CONFIG_SR_MN_CN_MULTINET4_5_SINGLE_RECOGNITION" in models_string:
models.append('mn4_cn')
elif "CONFIG_SR_MN_CN_MULTINET5_RECOGNITION_QUANT8" in models_string:
models.append('mn5q8_cn')
elif "CONFIG_SR_MN_CN_MULTINET6_QUANT" in models_string:
models.append('mn6_cn')
elif "CONFIG_SR_MN_CN_MULTINET6_AC_QUANT" in models_string:
models.append('mn6_cn_ac')
elif "CONFIG_SR_MN_CN_MULTINET7_QUANT" in models_string:
models.append('mn7_cn')
elif "CONFIG_SR_MN_CN_MULTINET7_AC_QUANT" in models_string:
models.append('mn7_cn_ac')
if "CONFIG_SR_MN_EN_MULTINET5_SINGLE_RECOGNITION_QUANT8" in models_string:
models.append('mn5q8_en')
elif "CONFIG_SR_MN_EN_MULTINET5_SINGLE_RECOGNITION" in models_string:
models.append('mn5_en')
elif "CONFIG_SR_MN_EN_MULTINET6_QUANT" in models_string:
models.append('mn6_en')
elif "CONFIG_SR_MN_EN_MULTINET7_QUANT" in models_string:
models.append('mn7_en')
if "MULTINET6" in models_string or "MULTINET7" in models_string:
models.append('fst')
return models
def read_custom_wake_word_from_sdkconfig(sdkconfig_path):
"""
Read custom wake word configuration from sdkconfig
Returns a dict with custom wake word info or None if not configured
"""
if not os.path.exists(sdkconfig_path):
print(f"Warning: sdkconfig file not found: {sdkconfig_path}")
return None
config_values = {}
with io.open(sdkconfig_path, "r") as f:
for line in f:
line = line.strip("\n")
if line.startswith('#') or '=' not in line:
continue
# Check for custom wake word configuration
if 'CONFIG_USE_CUSTOM_WAKE_WORD=y' in line:
config_values['use_custom_wake_word'] = True
elif 'CONFIG_CUSTOM_WAKE_WORD=' in line and not line.startswith('#'):
# Extract string value (remove quotes)
value = line.split('=', 1)[1].strip('"')
config_values['wake_word'] = value
elif 'CONFIG_CUSTOM_WAKE_WORD_DISPLAY=' in line and not line.startswith('#'):
# Extract string value (remove quotes)
value = line.split('=', 1)[1].strip('"')
config_values['display'] = value
elif 'CONFIG_CUSTOM_WAKE_WORD_THRESHOLD=' in line and not line.startswith('#'):
# Extract numeric value
value = line.split('=', 1)[1]
try:
config_values['threshold'] = int(value)
except ValueError:
try:
config_values['threshold'] = float(value)
except ValueError:
print(f"Warning: Invalid threshold value: {value}")
config_values['threshold'] = 20 # default (will be converted to 0.2)
# Return config only if custom wake word is enabled and required fields are present
if (config_values.get('use_custom_wake_word', False) and
'wake_word' in config_values and
'display' in config_values and
'threshold' in config_values):
return {
'wake_word': config_values['wake_word'],
'display': config_values['display'],
'threshold': config_values['threshold'] / 100.0 # Convert to decimal (20 -> 0.2)
}
return None
def get_language_from_multinet_models(multinet_models):
"""
Determine language from multinet model names
Returns 'cn', 'en', or None
"""
if not multinet_models:
return None
# Check for Chinese models
cn_indicators = ['_cn', 'cn_']
en_indicators = ['_en', 'en_']
has_cn = any(any(indicator in model for indicator in cn_indicators) for model in multinet_models)
has_en = any(any(indicator in model for indicator in en_indicators) for model in multinet_models)
# If both or neither, default to cn
if has_cn and not has_en:
return 'cn'
elif has_en and not has_cn:
return 'en'
else:
return 'cn' # Default to Chinese
def get_wakenet_model_path(model_name, esp_sr_model_path):
"""
Get the full path to the wakenet model directory
"""
if not model_name:
return None
wakenet_model_path = os.path.join(esp_sr_model_path, 'wakenet_model', model_name)
if os.path.exists(wakenet_model_path):
return wakenet_model_path
else:
print(f"Warning: Wakenet model directory not found: {wakenet_model_path}")
return None
def get_multinet_model_paths(model_names, esp_sr_model_path):
"""
Get the full paths to the multinet model directories
Returns a list of valid model paths
"""
if not model_names:
return []
valid_paths = []
for model_name in model_names:
multinet_model_path = os.path.join(esp_sr_model_path, 'multinet_model', model_name)
if os.path.exists(multinet_model_path):
valid_paths.append(multinet_model_path)
else:
print(f"Warning: Multinet model directory not found: {multinet_model_path}")
return valid_paths
def get_text_font_path(builtin_text_font, xiaozhi_fonts_path):
"""
Get the text font path if needed
Returns the font file path or None if no font is needed
"""
if not builtin_text_font or 'basic' not in builtin_text_font:
return None
# Convert from basic to common font name
# e.g., font_puhui_basic_16_4 -> font_puhui_common_16_4.bin
font_name = builtin_text_font.replace('basic', 'common') + '.bin'
font_path = os.path.join(xiaozhi_fonts_path, 'cbin', font_name)
if os.path.exists(font_path):
return font_path
else:
print(f"Warning: Font file not found: {font_path}")
return None
def get_emoji_collection_path(default_emoji_collection, xiaozhi_fonts_path):
"""
Get the emoji collection path if needed
Returns the emoji directory path or None if no emoji collection is needed
"""
if not default_emoji_collection:
return None
emoji_path = os.path.join(xiaozhi_fonts_path, 'png', default_emoji_collection)
if os.path.exists(emoji_path):
return emoji_path
else:
print(f"Warning: Emoji collection directory not found: {emoji_path}")
return None
def build_assets_integrated(wakenet_model_path, multinet_model_paths, text_font_path, emoji_collection_path, extra_files_path, output_path, multinet_model_info=None):
"""
Build assets using integrated functions (no external dependencies)
"""
# Create temporary build directory
temp_build_dir = os.path.join(os.path.dirname(output_path), "temp_build")
assets_dir = os.path.join(temp_build_dir, "assets")
try:
# Clean and create directories
if os.path.exists(temp_build_dir):
shutil.rmtree(temp_build_dir)
ensure_dir(temp_build_dir)
ensure_dir(assets_dir)
print("Starting to build assets...")
# Process each component
srmodels = process_sr_models(wakenet_model_path, multinet_model_paths, temp_build_dir, assets_dir) if (wakenet_model_path or multinet_model_paths) else None
text_font = process_text_font(text_font_path, assets_dir) if text_font_path else None
emoji_collection = process_emoji_collection(emoji_collection_path, assets_dir) if emoji_collection_path else None
extra_files = process_extra_files(extra_files_path, assets_dir) if extra_files_path else None
# Generate index.json
generate_index_json(assets_dir, srmodels, text_font, emoji_collection, extra_files, multinet_model_info)
# Generate config.json for packing
config_path = generate_config_json(temp_build_dir, assets_dir)
# Load config and pack assets
with open(config_path, 'r') as f:
config_data = json.load(f)
# Use simplified packing function
include_path = config_data['include_path']
image_file = config_data['image_file']
pack_assets_simple(assets_dir, include_path, image_file, "assets", int(config_data['name_length']))
# Copy final assets.bin to output location
if os.path.exists(image_file):
shutil.copy2(image_file, output_path)
print(f"Successfully generated assets.bin: {output_path}")
# Show size information
total_size = os.path.getsize(output_path)
print(f"Assets file size: {total_size / 1024:.2f}K ({total_size} bytes)")
return True
else:
print(f"Error: Generated assets.bin not found: {image_file}")
return False
except Exception as e:
print(f"Error: Failed to build assets: {e}")
return False
finally:
# Clean up temporary directory
if os.path.exists(temp_build_dir):
shutil.rmtree(temp_build_dir)
def main():
parser = argparse.ArgumentParser(description='Build default assets based on configuration')
parser.add_argument('--sdkconfig', required=True, help='Path to sdkconfig file')
parser.add_argument('--builtin_text_font', help='Builtin text font name (e.g., font_puhui_basic_16_4)')
parser.add_argument('--emoji_collection', help='Default emoji collection name (e.g., emojis_32)')
parser.add_argument('--output', required=True, help='Output path for assets.bin')
parser.add_argument('--esp_sr_model_path', help='Path to ESP-SR model directory')
parser.add_argument('--xiaozhi_fonts_path', help='Path to xiaozhi-fonts component directory')
parser.add_argument('--extra_files', help='Path to extra files directory to be included in assets')
args = parser.parse_args()
# Get script directory (not needed anymore but keep for future use)
script_dir = os.path.dirname(os.path.abspath(__file__))
# Set default paths if not provided
if not args.esp_sr_model_path:
# Default ESP-SR model path relative to project root
project_root = os.path.dirname(os.path.dirname(script_dir))
args.esp_sr_model_path = os.path.join(project_root, "managed_components", "espressif__esp-sr", "model")
if not args.xiaozhi_fonts_path:
# Default xiaozhi-fonts path relative to project root
project_root = os.path.dirname(os.path.dirname(script_dir))
args.xiaozhi_fonts_path = os.path.join(project_root, "managed_components", "78__xiaozhi-fonts")
print("Building default assets...")
print(f" sdkconfig: {args.sdkconfig}")
print(f" builtin_text_font: {args.builtin_text_font}")
print(f" emoji_collection: {args.emoji_collection}")
print(f" output: {args.output}")
# Read SR models from sdkconfig
wakenet_model_name = read_wakenet_from_sdkconfig(args.sdkconfig)
multinet_model_names = read_multinet_from_sdkconfig(args.sdkconfig)
# Get model paths
wakenet_model_path = get_wakenet_model_path(wakenet_model_name, args.esp_sr_model_path)
multinet_model_paths = get_multinet_model_paths(multinet_model_names, args.esp_sr_model_path)
# Print model information
if wakenet_model_name:
print(f" wakenet model: {wakenet_model_name}")
if multinet_model_names:
print(f" multinet models: {', '.join(multinet_model_names)}")
# Get text font path if needed
text_font_path = get_text_font_path(args.builtin_text_font, args.xiaozhi_fonts_path)
# Get emoji collection path if needed
emoji_collection_path = get_emoji_collection_path(args.emoji_collection, args.xiaozhi_fonts_path)
# Get extra files path if provided
extra_files_path = args.extra_files
# Read custom wake word configuration
custom_wake_word_config = read_custom_wake_word_from_sdkconfig(args.sdkconfig)
multinet_model_info = None
if custom_wake_word_config and multinet_model_names:
# Determine language from multinet models
language = get_language_from_multinet_models(multinet_model_names)
# Build multinet_model info structure
multinet_model_info = {
"language": language,
"duration": 3000, # Default duration in ms
"threshold": custom_wake_word_config['threshold'],
"commands": [
{
"command": custom_wake_word_config['wake_word'],
"text": custom_wake_word_config['display'],
"action": "wake"
}
]
}
print(f" custom wake word: {custom_wake_word_config['wake_word']} ({custom_wake_word_config['display']})")
print(f" wake word language: {language}")
print(f" wake word threshold: {custom_wake_word_config['threshold']}")
# Check if we have anything to build
if not wakenet_model_path and not multinet_model_paths and not text_font_path and not emoji_collection_path and not extra_files_path and not multinet_model_info:
print("Warning: No assets to build (no SR models, text font, emoji collection, extra files, or custom wake word)")
# Create an empty assets.bin file
os.makedirs(os.path.dirname(args.output), exist_ok=True)
with open(args.output, 'wb') as f:
pass # Create empty file
print(f"Created empty assets.bin: {args.output}")
return
# Build the assets
success = build_assets_integrated(wakenet_model_path, multinet_model_paths, text_font_path, emoji_collection_path,
extra_files_path, args.output, multinet_model_info)
if not success:
sys.exit(1)
print("Build completed successfully!")
if __name__ == "__main__":
main()