add: 添加声音检测的可视化以及声波demod的准确度 (#1077)

Co-authored-by: yangkaiyue <yangkaiyue1@tenclass.com>
This commit is contained in:
Ky1eYang
2025-08-14 22:11:56 +08:00
committed by GitHub
parent d6b1414967
commit cf4afde88e
5 changed files with 769 additions and 0 deletions

View File

@@ -0,0 +1,280 @@
"""
实时AFSK解调器 - 基于Goertzel算法
"""
import numpy as np
from collections import deque
class TraceGoertzel:
"""实时Goertzel算法实现"""
def __init__(self, freq: float, n: int):
"""
初始化Goertzel算法
Args:
freq: 归一化频率 (目标频率/采样频率)
n: 窗口大小
"""
self.freq = freq
self.n = n
# 预计算系数 - 与参考代码一致
self.k = int(freq * n)
self.w = 2.0 * np.pi * freq
self.cw = np.cos(self.w)
self.sw = np.sin(self.w)
self.c = 2.0 * self.cw
# 初始化状态变量 - 使用deque存储最近两个值
self.zs = deque([0.0, 0.0], maxlen=2)
def reset(self):
"""重置算法状态"""
self.zs.clear()
self.zs.extend([0.0, 0.0])
def __call__(self, xs):
"""
处理一组采样点 - 与参考代码一致的接口
Args:
xs: 采样点序列
Returns:
计算出的振幅
"""
self.reset()
for x in xs:
z1, z2 = self.zs[-1], self.zs[-2] # Z[-1], Z[-2]
z0 = x + self.c * z1 - z2 # S[n] = x[n] + C * S[n-1] - S[n-2]
self.zs.append(float(z0)) # 更新序列
return self.amp
@property
def amp(self) -> float:
"""计算当前振幅 - 与参考代码一致"""
z1, z2 = self.zs[-1], self.zs[-2]
ip = self.cw * z1 - z2
qp = self.sw * z1
return np.sqrt(ip**2 + qp**2) / (self.n / 2.0)
class PairGoertzel:
"""双频Goertzel解调器"""
def __init__(self, f_sample: int, f_space: int, f_mark: int,
bit_rate: int, win_size: int):
"""
初始化双频解调器
Args:
f_sample: 采样频率
f_space: Space频率 (通常对应0)
f_mark: Mark频率 (通常对应1)
bit_rate: 比特率
win_size: Goertzel窗口大小
"""
assert f_sample % bit_rate == 0, "采样频率必须是比特率的整数倍"
self.Fs = f_sample
self.F0 = f_space
self.F1 = f_mark
self.bit_rate = bit_rate
self.n_per_bit = int(f_sample // bit_rate) # 每个比特的采样点数
# 计算归一化频率
f1 = f_mark / f_sample
f0 = f_space / f_sample
# 初始化Goertzel算法
self.g0 = TraceGoertzel(freq=f0, n=win_size)
self.g1 = TraceGoertzel(freq=f1, n=win_size)
# 输入缓冲区
self.in_buffer = deque(maxlen=win_size)
self.out_count = 0
print(f"PairGoertzel initialized: f0={f0:.6f}, f1={f1:.6f}, win_size={win_size}, n_per_bit={self.n_per_bit}")
def __call__(self, s: float):
"""
处理单个采样点 - 与参考代码一致的接口
Args:
s: 采样点值
Returns:
(amp0, amp1, p1_prob) - 空间频率振幅,标记频率振幅,标记概率
"""
self.in_buffer.append(s)
self.out_count += 1
amp0, amp1, p1_prob = 0, 0, None
# 每个比特周期输出一次结果
if self.out_count >= self.n_per_bit:
amp0 = self.g0(self.in_buffer) # 计算space频率振幅
amp1 = self.g1(self.in_buffer) # 计算mark频率振幅
p1_prob = amp1 / (amp0 + amp1 + 1e-8) # 计算mark概率
self.out_count = 0
return amp0, amp1, p1_prob
class RealTimeAFSKDecoder:
"""实时AFSK解码器 - 基于起始帧触发"""
def __init__(self, f_sample: int = 16000, mark_freq: int = 1800,
space_freq: int = 1500, bitrate: int = 100,
s_goertzel: int = 9, threshold: float = 0.5):
"""
初始化实时AFSK解码器
Args:
f_sample: 采样频率
mark_freq: Mark频率
space_freq: Space频率
bitrate: 比特率
s_goertzel: Goertzel窗口大小系数 (win_size = f_sample // mark_freq * s_goertzel)
threshold: 判决门限
"""
self.f_sample = f_sample
self.mark_freq = mark_freq
self.space_freq = space_freq
self.bitrate = bitrate
self.threshold = threshold
# 计算窗口大小 - 与参考代码一致
win_size = int(f_sample / mark_freq * s_goertzel)
# 初始化解调器
self.demodulator = PairGoertzel(f_sample, space_freq, mark_freq,
bitrate, win_size)
# 帧定义 - 与参考代码一致
self.start_bytes = b'\x01\x02'
self.end_bytes = b'\x03\x04'
self.start_bits = "".join(format(int(x), '08b') for x in self.start_bytes)
self.end_bits = "".join(format(int(x), '08b') for x in self.end_bytes)
# 状态机
self.state = "idle" # idle / entering
# 存储解调结果
self.buffer_prelude:deque = deque(maxlen=len(self.start_bits)) # 判断是否启动
self.indicators = [] # 存储概率序列
self.signal_bits = "" # 存储比特序列
self.text_cache = ""
# 解码结果
self.decoded_messages = []
self.total_bits_received = 0
print(f"Decoder initialized: win_size={win_size}")
print(f"Start frame: {self.start_bits} (from {self.start_bytes.hex()})")
print(f"End frame: {self.end_bits} (from {self.end_bytes.hex()})")
def process_audio(self, samples: np.array) -> str:
"""
处理音频数据并返回解码文本
Args:
audio_data: 音频字节数据 (16-bit PCM)
Returns:
新解码的文本
"""
new_text = ""
# 逐个处理采样点
for sample in samples:
amp0, amp1, p1_prob = self.demodulator(sample)
# 如果有概率输出,记录并判决
if p1_prob is not None:
bit = '1' if p1_prob > self.threshold else '0'
match self.state:
case "idle":
self.buffer_prelude.append(bit)
pass
case "entering":
self.buffer_prelude.append(bit)
self.signal_bits += bit
self.total_bits_received += 1
case _:
pass
self.indicators.append(p1_prob)
# 检查状态机
if self.state == "idle" and "".join(self.buffer_prelude) == self.start_bits:
self.state = "entering"
self.text_cache = ""
self.signal_bits = "" # 清空比特序列
self.buffer_prelude.clear()
elif self.state == "entering" and ("".join(self.buffer_prelude) == self.end_bits or len(self.signal_bits) >= 256):
self.state = "idle"
self.buffer_prelude.clear()
# 每收集一定数量的比特后尝试解码
if len(self.signal_bits) >= 8:
text = self._decode_bits_to_text(self.signal_bits)
if len(text) > len(self.text_cache):
new_text = text[len(self.text_cache) - len(text):]
self.text_cache = text
return new_text
def _decode_bits_to_text(self, bits: str) -> str:
"""
将比特串解码为文本
Args:
bits: 比特串
Returns:
解码出的文本
"""
if len(bits) < 8:
return ""
decoded_text = ""
byte_count = len(bits) // 8
for i in range(byte_count):
# 提取8位
byte_bits = bits[i*8:(i+1)*8]
# 位转字节
byte_val = int(byte_bits, 2)
# 尝试解码为ASCII字符
if 32 <= byte_val <= 126: # 可打印ASCII字符
decoded_text += chr(byte_val)
elif byte_val == 0: # NULL字符忽略
continue
else:
# 非可打印字符pass以十六进制显示
pass
# decoded_text += f"\\x{byte_val:02X}"
return decoded_text
def clear(self):
"""清空解码状态"""
self.indicators = []
self.signal_bits = ""
self.decoded_messages = []
self.total_bits_received = 0
print("解码器状态已清空")
def get_stats(self) -> dict:
"""获取解码统计信息"""
return {
'prelude_bits': "".join(self.buffer_prelude),
"state": self.state,
'total_chars': sum(len(msg) for msg in self.text_cache),
'buffer_bits': len(self.signal_bits),
'mark_freq': self.mark_freq,
'space_freq': self.space_freq,
'bitrate': self.bitrate,
'threshold': self.threshold,
}

View File

@@ -0,0 +1,444 @@
import sys
import numpy as np
import asyncio
import wave
from collections import deque
import qasync
import matplotlib
matplotlib.use('qtagg')
from matplotlib.backends.backend_qtagg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qtagg import NavigationToolbar2QT as NavigationToolbar # noqa: F401
from matplotlib.figure import Figure
from PyQt6.QtWidgets import (QApplication, QMainWindow, QVBoxLayout, QWidget,
QHBoxLayout, QLineEdit, QPushButton, QLabel, QTextEdit)
from PyQt6.QtCore import QTimer
# 导入解码器
from demod import RealTimeAFSKDecoder
class UDPServerProtocol(asyncio.DatagramProtocol):
"""UDP服务器协议类"""
def __init__(self, data_queue):
self.client_address = None
self.data_queue: deque = data_queue
def connection_made(self, transport):
self.transport = transport
def datagram_received(self, data, addr):
# 如果还没有客户端地址,记录第一个连接的客户端
if self.client_address is None:
self.client_address = addr
print(f"接受来自 {addr} 的连接")
# 只处理来自已记录客户端的数据
if addr == self.client_address:
# 将接收到的音频数据添加到队列
self.data_queue.extend(data)
else:
print(f"忽略来自未知地址 {addr} 的数据")
class MatplotlibWidget(QWidget):
def __init__(self, parent=None):
super().__init__(parent)
# 创建 Matplotlib 的 Figure 对象
self.figure = Figure()
# 创建 FigureCanvas 对象,它是 Figure 的 QWidget 容器
self.canvas = FigureCanvas(self.figure)
# 创建 Matplotlib 的导航工具栏
# self.toolbar = NavigationToolbar(self.canvas, self)
self.toolbar = None
# 创建布局
layout = QVBoxLayout()
layout.addWidget(self.toolbar)
layout.addWidget(self.canvas)
self.setLayout(layout)
# 初始化音频数据参数
self.freq = 16000 # 采样频率
self.time_window = 20 # 显示时间窗口
self.wave_data = deque(maxlen=self.freq * self.time_window * 2) # 缓冲队列, 用于分发计算/绘图
self.signals = deque(maxlen=self.freq * self.time_window) # 双端队列存储信号数据
# 创建包含两个子图的画布
self.ax1 = self.figure.add_subplot(2, 1, 1)
self.ax2 = self.figure.add_subplot(2, 1, 2)
# 时域子图
self.ax1.set_title('Real-time Audio Waveform')
self.ax1.set_xlabel('Sample Index')
self.ax1.set_ylabel('Amplitude')
self.line_time, = self.ax1.plot([], [])
self.ax1.grid(True, alpha=0.3)
# 频域子图
self.ax2.set_title('Real-time Frequency Spectrum')
self.ax2.set_xlabel('Frequency (Hz)')
self.ax2.set_ylabel('Magnitude')
self.line_freq, = self.ax2.plot([], [])
self.ax2.grid(True, alpha=0.3)
self.figure.tight_layout()
# 定时器用于更新图表
self.timer = QTimer(self)
self.timer.setInterval(100) # 100毫秒更新一次
self.timer.timeout.connect(self.update_plot)
# 初始化AFSK解码器
self.decoder = RealTimeAFSKDecoder(
f_sample=self.freq,
mark_freq=1800,
space_freq=1500,
bitrate=100,
s_goertzel=9,
threshold=0.5
)
# 解码结果回调
self.decode_callback = None
def start_plotting(self):
"""开始绘图"""
self.timer.start()
def stop_plotting(self):
"""停止绘图"""
self.timer.stop()
def update_plot(self):
"""更新绘图数据"""
if len(self.wave_data) >= 2:
# 进行实时解码
# 获取最新的音频数据进行解码
even = len(self.wave_data) // 2 * 2
print(f"length of wave_data: {len(self.wave_data)}")
drained = [self.wave_data.popleft() for _ in range(even)]
signal = np.frombuffer(bytearray(drained), dtype='<i2') / 32768
decoded_text_new = self.decoder.process_audio(signal) # 处理新增信号, 返回全量解码文本
if decoded_text_new and self.decode_callback:
self.decode_callback(decoded_text_new)
self.signals.extend(signal.tolist()) # 将波形数据添加到绘图数据
if len(self.signals) > 0:
# 只显示最近的一段数据,避免图表过于密集
signal = np.array(self.signals)
max_samples = min(len(signal), self.freq * self.time_window)
if len(signal) > max_samples:
signal = signal[-max_samples:]
# 更新时域图
x = np.arange(len(signal))
self.line_time.set_data(x, signal)
# 自动调整时域坐标轴范围
if len(signal) > 0:
self.ax1.set_xlim(0, len(signal))
y_min, y_max = np.min(signal), np.max(signal)
if y_min != y_max:
margin = (y_max - y_min) * 0.1
self.ax1.set_ylim(y_min - margin, y_max + margin)
else:
self.ax1.set_ylim(-1, 1)
# 计算频谱(短时离散傅立叶变换)
if len(signal) > 1:
# 计算FFT
fft_signal = np.abs(np.fft.fft(signal))
frequencies = np.fft.fftfreq(len(signal), 1/self.freq)
# 只取正频率部分
positive_freq_idx = frequencies >= 0
freq_positive = frequencies[positive_freq_idx]
fft_positive = fft_signal[positive_freq_idx]
# 更新频域图
self.line_freq.set_data(freq_positive, fft_positive)
# 自动调整频域坐标轴范围
if len(fft_positive) > 0:
# 限制频率显示范围到0-4000Hz避免过于密集
max_freq_show = min(4000, self.freq // 2)
freq_mask = freq_positive <= max_freq_show
if np.any(freq_mask):
self.ax2.set_xlim(0, max_freq_show)
fft_masked = fft_positive[freq_mask]
if len(fft_masked) > 0:
fft_max = np.max(fft_masked)
if fft_max > 0:
self.ax2.set_ylim(0, fft_max * 1.1)
else:
self.ax2.set_ylim(0, 1)
self.canvas.draw()
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("Acoustic Check")
self.setGeometry(100, 100, 1000, 800)
# 主窗口部件
main_widget = QWidget()
self.setCentralWidget(main_widget)
# 主布局
main_layout = QVBoxLayout(main_widget)
# 绘图区域
self.matplotlib_widget = MatplotlibWidget()
main_layout.addWidget(self.matplotlib_widget)
# 控制面板
control_panel = QWidget()
control_layout = QHBoxLayout(control_panel)
# 监听地址和端口输入
control_layout.addWidget(QLabel("监听地址:"))
self.address_input = QLineEdit("0.0.0.0")
self.address_input.setFixedWidth(120)
control_layout.addWidget(self.address_input)
control_layout.addWidget(QLabel("端口:"))
self.port_input = QLineEdit("8000")
self.port_input.setFixedWidth(80)
control_layout.addWidget(self.port_input)
# 监听按钮
self.listen_button = QPushButton("开始监听")
self.listen_button.clicked.connect(self.toggle_listening)
control_layout.addWidget(self.listen_button)
# 状态标签
self.status_label = QLabel("状态: 未连接")
control_layout.addWidget(self.status_label)
# 数据统计标签
self.data_label = QLabel("接收数据: 0 bytes")
control_layout.addWidget(self.data_label)
# 保存按钮
self.save_button = QPushButton("保存音频")
self.save_button.clicked.connect(self.save_audio)
self.save_button.setEnabled(False)
control_layout.addWidget(self.save_button)
control_layout.addStretch() # 添加弹性空间
main_layout.addWidget(control_panel)
# 解码显示区域
decode_panel = QWidget()
decode_layout = QVBoxLayout(decode_panel)
# 解码标题
decode_title = QLabel("实时AFSK解码结果:")
decode_title.setStyleSheet("font-weight: bold; font-size: 14px;")
decode_layout.addWidget(decode_title)
# 解码文本显示
self.decode_text = QTextEdit()
self.decode_text.setMaximumHeight(150)
self.decode_text.setReadOnly(True)
self.decode_text.setStyleSheet("font-family: 'Courier New', monospace; font-size: 12px;")
decode_layout.addWidget(self.decode_text)
# 解码控制按钮
decode_control_layout = QHBoxLayout()
# 清空按钮
self.clear_decode_button = QPushButton("清空解码")
self.clear_decode_button.clicked.connect(self.clear_decode_text)
decode_control_layout.addWidget(self.clear_decode_button)
# 解码统计标签
self.decode_stats_label = QLabel("解码统计: 0 bits, 0 chars")
decode_control_layout.addWidget(self.decode_stats_label)
decode_control_layout.addStretch()
decode_layout.addLayout(decode_control_layout)
main_layout.addWidget(decode_panel)
# 设置解码回调
self.matplotlib_widget.decode_callback = self.on_decode_text
# UDP相关属性
self.udp_transport = None
self.is_listening = False
# 数据统计定时器
self.stats_timer = QTimer(self)
self.stats_timer.setInterval(1000) # 每秒更新一次统计
self.stats_timer.timeout.connect(self.update_stats)
def on_decode_text(self, new_text: str):
"""解码文本回调"""
if new_text:
# 添加新解码的文本
current_text = self.decode_text.toPlainText()
updated_text = current_text + new_text
# 限制文本长度保留最新的1000个字符
if len(updated_text) > 1000:
updated_text = updated_text[-1000:]
self.decode_text.setPlainText(updated_text)
# 滚动到底部
cursor = self.decode_text.textCursor()
cursor.movePosition(cursor.MoveOperation.End)
self.decode_text.setTextCursor(cursor)
def clear_decode_text(self):
"""清空解码文本"""
self.decode_text.clear()
if hasattr(self.matplotlib_widget, 'decoder'):
self.matplotlib_widget.decoder.clear()
self.decode_stats_label.setText("解码统计: 0 bits, 0 chars")
def update_decode_stats(self):
"""更新解码统计"""
if hasattr(self.matplotlib_widget, 'decoder'):
stats = self.matplotlib_widget.decoder.get_stats()
stats_text = (
f"前置: {stats['prelude_bits']} , 已接收{stats['total_chars']} chars, "
f"缓冲: {stats['buffer_bits']} bits, 状态: {stats['state']}"
)
self.decode_stats_label.setText(stats_text)
def toggle_listening(self):
"""切换监听状态"""
if not self.is_listening:
self.start_listening()
else:
self.stop_listening()
async def start_listening_async(self):
"""异步启动UDP监听"""
try:
address = self.address_input.text().strip()
port = int(self.port_input.text().strip())
loop = asyncio.get_running_loop()
self.udp_transport, protocol = await loop.create_datagram_endpoint(
lambda: UDPServerProtocol(self.matplotlib_widget.wave_data),
local_addr=(address, port)
)
self.status_label.setText(f"状态: 监听中 ({address}:{port})")
print(f"UDP服务器启动, 监听 {address}:{port}")
except Exception as e:
self.status_label.setText(f"状态: 启动失败 - {str(e)}")
print(f"UDP服务器启动失败: {e}")
self.is_listening = False
self.listen_button.setText("开始监听")
self.address_input.setEnabled(True)
self.port_input.setEnabled(True)
def start_listening(self):
"""开始监听"""
try:
int(self.port_input.text().strip()) # 验证端口号格式
except ValueError:
self.status_label.setText("状态: 端口号必须是数字")
return
self.is_listening = True
self.listen_button.setText("停止监听")
self.address_input.setEnabled(False)
self.port_input.setEnabled(False)
self.save_button.setEnabled(True)
# 清空数据队列
self.matplotlib_widget.wave_data.clear()
# 启动绘图和统计更新
self.matplotlib_widget.start_plotting()
self.stats_timer.start()
# 异步启动UDP服务器
loop = asyncio.get_event_loop()
loop.create_task(self.start_listening_async())
def stop_listening(self):
"""停止监听"""
self.is_listening = False
self.listen_button.setText("开始监听")
self.address_input.setEnabled(True)
self.port_input.setEnabled(True)
# 停止UDP服务器
if self.udp_transport:
self.udp_transport.close()
self.udp_transport = None
# 停止绘图和统计更新
self.matplotlib_widget.stop_plotting()
self.matplotlib_widget.wave_data.clear()
self.stats_timer.stop()
self.status_label.setText("状态: 已停止")
def update_stats(self):
"""更新数据统计"""
data_size = len(self.matplotlib_widget.signals)
self.data_label.setText(f"接收数据: {data_size} 采样")
# 更新解码统计
self.update_decode_stats()
def save_audio(self):
"""保存音频数据"""
if len(self.matplotlib_widget.signals) > 0:
try:
signal_data = np.array(self.matplotlib_widget.signals)
# 保存为WAV文件
with wave.open("received_audio.wav", "wb") as wf:
wf.setnchannels(1) # 单声道
wf.setsampwidth(2) # 采样宽度为2字节
wf.setframerate(self.matplotlib_widget.freq) # 设置采样率
wf.writeframes(signal_data.tobytes()) # 写入数据
self.status_label.setText("状态: 音频已保存为 received_audio.wav")
print("音频已保存为 received_audio.wav")
except Exception as e:
self.status_label.setText(f"状态: 保存失败 - {str(e)}")
print(f"保存音频失败: {e}")
else:
self.status_label.setText("状态: 没有足够的数据可保存")
async def main():
"""异步主函数"""
app = QApplication(sys.argv)
# 设置异步事件循环
loop = qasync.QEventLoop(app)
asyncio.set_event_loop(loop)
window = MainWindow()
window.show()
try:
with loop:
await loop.run_forever()
except KeyboardInterrupt:
print("程序被用户中断")
finally:
# 确保清理资源
if window.udp_transport:
window.udp_transport.close()

View File

@@ -0,0 +1,18 @@
#!/usr/bin/env python3
"""
音频实时监听与绘图系统主程序
基于Qt GUI + Matplotlib + UDP接收 + AFSK解码字符串
"""
import sys
import asyncio
from graphic import main
if __name__ == '__main__':
try:
asyncio.run(main())
except KeyboardInterrupt:
print("程序被用户中断")
except Exception as e:
print(f"程序执行出错: {e}")
sys.exit(1)

View File

@@ -0,0 +1,23 @@
# 声波测试
该gui用于测试接受小智设备通过`udp`回传的`pcm`转时域/频域, 可以保存窗口长度的声音, 用于判断噪音频率分布和测试声波传输ascii的准确度,
固件测试需要打开`USE_AUDIO_DEBUGGER`, 并设置好`AUDIO_DEBUG_UDP_SERVER`是本机地址.
声波`demod`可以通过`sonic_wifi_config.html`或者上传至`PinMe`的[小智声波配网](https://iqf7jnhi.pinit.eth.limo)来输出声波测试
# 声波解码测试记录
> `✓`代表在I2S DIN接收原始PCM信号时就能成功解码, `△`代表需要降噪或额外操作可稳定解码, `X`代表降噪后效果也不好(可能能解部分但非常不稳定)。
> 个别ADC需要I2C配置阶段做更精细的降噪调整, 由于设备不通用暂只按照boards内提供的config测试
| 设备 | ADC | MIC | 效果 | 备注 |
| ---- | ---- | --- | --- | ---- |
| bread-compact | INMP441 | 集成MEMEMIC | ✓ |
| atk-dnesp32s3-box | ES8311 | | ✓ |
| magiclick-2p5 | ES8311 | | ✓ |
| lichuang-dev | ES7210 | | △ | 测试时需要关掉INPUT_REFERENCE
| kevin-box-2 | ES7210 | | △ | 测试时需要关掉INPUT_REFERENCE
| m5stack-core-s3 | ES7210 | | △ | 测试时需要关掉INPUT_REFERENCE
| xmini-c3 | ES8311 | | △ | 需降噪
| atoms3r-echo-base | ES8311 | | △ | 需降噪
| atk-dnesp32s3-box0 | ES8311 | | X | 能接收且解码, 但是丢包率很高
| movecall-moji-esp32s3 | ES8311 | | X | 能接收且解码, 但是丢包率很高

View File

@@ -0,0 +1,4 @@
matplotlib==3.10.5
numpy==2.3.2
PyQt6==6.9.1
qasync==0.27.1