FIX: 修复双声道声波配网失效, 添加屏幕打印SSID/密码 (#971)

* debug: 添加声波配网的log打印点display

* fix: 修复双声道下声波配网失效的问题

* fix: codec可能为nullptr的问题(需要从单例board获取)

* Update afsk_demod.cc

fix coding style

---------

Co-authored-by: yangkaiyue <yangkaiyue1@tenclass.com>
Co-authored-by: Xiaoxia <terrence@tenclass.com>
This commit is contained in:
Ky1eYang
2025-07-23 22:59:07 +08:00
committed by GitHub
parent ca35b0761b
commit 656bf3c7fa
3 changed files with 72 additions and 104 deletions

View File

@@ -2,6 +2,7 @@
#include <cstring>
#include <algorithm>
#include "esp_log.h"
#include "display.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
@@ -12,7 +13,10 @@ namespace audio_wifi_config
static const char *kLogTag = "AUDIO_WIFI_CONFIG";
void ReceiveWifiCredentialsFromAudio(Application *app,
WifiConfigurationAp *wifi_ap)
WifiConfigurationAp *wifi_ap,
Display *display,
size_t input_channels
)
{
const int kInputSampleRate = 16000; // Input sampling rate
const float kDownsampleStep = static_cast<float>(kInputSampleRate) / static_cast<float>(kAudioSampleRate); // Downsampling step
@@ -36,28 +40,30 @@ namespace audio_wifi_config
continue;
}
if (input_channels == 2) { // 如果是双声道输入,转换为单声道
auto mono_data = std::vector<int16_t>(audio_data.size() / 2);
for (size_t i = 0, j = 0; i < mono_data.size(); ++i, j += 2) {
mono_data[i] = audio_data[j];
}
audio_data = std::move(mono_data);
}
// Downsample the audio data
std::vector<float> downsampled_data;
size_t last_index = 0;
if (kDownsampleStep > 1.0f)
{
if (kDownsampleStep > 1.0f) {
downsampled_data.reserve(audio_data.size() / static_cast<size_t>(kDownsampleStep));
for (size_t i = 0; i < audio_data.size(); ++i)
{
for (size_t i = 0; i < audio_data.size(); ++i) {
size_t sample_index = static_cast<size_t>(i / kDownsampleStep);
if ((sample_index + 1) > last_index)
{
if ((sample_index + 1) > last_index) {
downsampled_data.push_back(static_cast<float>(audio_data[i]));
last_index = sample_index + 1;
}
}
}
else
{
} else {
downsampled_data.reserve(audio_data.size());
for (int16_t sample : audio_data)
{
for (int16_t sample : audio_data) {
downsampled_data.push_back(static_cast<float>(sample));
}
}
@@ -66,35 +72,28 @@ namespace audio_wifi_config
auto probabilities = signal_processor.ProcessAudioSamples(downsampled_data);
// Feed probability data to the data buffer
if (data_buffer.ProcessProbabilityData(probabilities, 0.5f))
{
if (data_buffer.ProcessProbabilityData(probabilities, 0.5f)) {
// If complete data was received, extract WiFi credentials
if (data_buffer.decoded_text.has_value())
{
if (data_buffer.decoded_text.has_value()) {
ESP_LOGI(kLogTag, "Received text data: %s", data_buffer.decoded_text->c_str());
display->SetChatMessage("system", data_buffer.decoded_text->c_str());
// Split SSID and password by newline character
std::string wifi_ssid, wifi_password;
size_t newline_position = data_buffer.decoded_text->find('\n');
if (newline_position != std::string::npos)
{
if (newline_position != std::string::npos) {
wifi_ssid = data_buffer.decoded_text->substr(0, newline_position);
wifi_password = data_buffer.decoded_text->substr(newline_position + 1);
ESP_LOGI(kLogTag, "WiFi SSID: %s, Password: %s", wifi_ssid.c_str(), wifi_password.c_str());
}
else
{
} else {
ESP_LOGE(kLogTag, "Invalid data format, no newline character found");
continue;
}
if (wifi_ap->ConnectToWifi(wifi_ssid, wifi_password))
{
if (wifi_ap->ConnectToWifi(wifi_ssid, wifi_password)) {
wifi_ap->Save(wifi_ssid, wifi_password); // Save WiFi credentials
esp_restart(); // Restart device to apply new WiFi configuration
}
else
{
} else {
ESP_LOGE(kLogTag, "Failed to connect to WiFi with received credentials");
}
data_buffer.decoded_text.reset(); // Clear processed data
@@ -115,8 +114,7 @@ namespace audio_wifi_config
// FrequencyDetector implementation
FrequencyDetector::FrequencyDetector(float frequency, size_t window_size)
: frequency_(frequency), window_size_(window_size)
{
: frequency_(frequency), window_size_(window_size) {
frequency_bin_ = std::floor(frequency_ * static_cast<float>(window_size_));
angular_frequency_ = 2.0f * M_PI * frequency_;
cos_coefficient_ = std::cos(angular_frequency_);
@@ -128,17 +126,14 @@ namespace audio_wifi_config
state_buffer_.push_back(0.0f);
}
void FrequencyDetector::Reset()
{
void FrequencyDetector::Reset() {
state_buffer_.clear();
state_buffer_.push_back(0.0f);
state_buffer_.push_back(0.0f);
}
void FrequencyDetector::ProcessSample(float sample)
{
if (state_buffer_.size() < 2)
{
void FrequencyDetector::ProcessSample(float sample) {
if (state_buffer_.size() < 2) {
return;
}
@@ -153,10 +148,8 @@ namespace audio_wifi_config
state_buffer_.push_back(s_current); // Add new S[0]
}
float FrequencyDetector::GetAmplitude() const
{
if (state_buffer_.size() < 2)
{
float FrequencyDetector::GetAmplitude() const {
if (state_buffer_.size() < 2) {
return 0.0f;
}
@@ -172,10 +165,8 @@ namespace audio_wifi_config
// AudioSignalProcessor implementation
AudioSignalProcessor::AudioSignalProcessor(size_t sample_rate, size_t mark_frequency, size_t space_frequency,
size_t bit_rate, size_t window_size)
: input_buffer_size_(window_size), output_sample_count_(0)
{
if (sample_rate % bit_rate != 0)
{
: input_buffer_size_(window_size), output_sample_count_(0) {
if (sample_rate % bit_rate != 0) {
// On ESP32 we can continue execution, but log the error
ESP_LOGW(kLogTag, "Sample rate %zu is not divisible by bit rate %zu", sample_rate, bit_rate);
}
@@ -189,28 +180,21 @@ namespace audio_wifi_config
samples_per_bit_ = sample_rate / bit_rate; // Number of samples per bit
}
std::vector<float> AudioSignalProcessor::ProcessAudioSamples(const std::vector<float> &samples)
{
std::vector<float> AudioSignalProcessor::ProcessAudioSamples(const std::vector<float> &samples) {
std::vector<float> result;
for (float sample : samples)
{
if (input_buffer_.size() < input_buffer_size_)
{
for (float sample : samples) {
if (input_buffer_.size() < input_buffer_size_) {
input_buffer_.push_back(sample); // Just add, don't process yet
}
else
{
} else {
// Input buffer is full, process the data
input_buffer_.pop_front(); // Remove oldest sample
input_buffer_.push_back(sample); // Add new sample
output_sample_count_++;
if (output_sample_count_ >= samples_per_bit_)
{
if (output_sample_count_ >= samples_per_bit_) {
// Process all samples in the window using Goertzel algorithm
for (float window_sample : input_buffer_)
{
for (float window_sample : input_buffer_) {
mark_detector_->ProcessSample(window_sample);
space_detector_->ProcessSample(window_sample);
}
@@ -239,8 +223,7 @@ namespace audio_wifi_config
: current_state_(DataReceptionState::kInactive),
start_of_transmission_(kDefaultStartTransmissionPattern),
end_of_transmission_(kDefaultEndTransmissionPattern),
enable_checksum_validation_(true)
{
enable_checksum_validation_(true) {
identifier_buffer_size_ = std::max(start_of_transmission_.size(), end_of_transmission_.size());
max_bit_buffer_size_ = 776; // Preset bit buffer size, 776 bits = (32 + 1 + 63 + 1) * 8 = 776
@@ -252,48 +235,39 @@ namespace audio_wifi_config
: current_state_(DataReceptionState::kInactive),
start_of_transmission_(start_identifier),
end_of_transmission_(end_identifier),
enable_checksum_validation_(enable_checksum)
{
enable_checksum_validation_(enable_checksum) {
identifier_buffer_size_ = std::max(start_of_transmission_.size(), end_of_transmission_.size());
max_bit_buffer_size_ = max_byte_size * 8; // Bit buffer size in bytes
bit_buffer_.reserve(max_bit_buffer_size_);
}
uint8_t AudioDataBuffer::CalculateChecksum(const std::string &text)
{
uint8_t AudioDataBuffer::CalculateChecksum(const std::string &text) {
uint8_t checksum = 0;
for (char character : text)
{
for (char character : text) {
checksum += static_cast<uint8_t>(character);
}
return checksum;
}
void AudioDataBuffer::ClearBuffers()
{
void AudioDataBuffer::ClearBuffers() {
identifier_buffer_.clear();
bit_buffer_.clear();
}
bool AudioDataBuffer::ProcessProbabilityData(const std::vector<float> &probabilities, float threshold)
{
for (float probability : probabilities)
{
bool AudioDataBuffer::ProcessProbabilityData(const std::vector<float> &probabilities, float threshold) {
for (float probability : probabilities) {
uint8_t bit = (probability > threshold) ? 1 : 0;
if (identifier_buffer_.size() >= identifier_buffer_size_)
{
if (identifier_buffer_.size() >= identifier_buffer_size_) {
identifier_buffer_.pop_front(); // Maintain buffer size
}
identifier_buffer_.push_back(bit);
// Process received bit based on state machine
switch (current_state_)
{
switch (current_state_) {
case DataReceptionState::kInactive:
if (identifier_buffer_.size() >= start_of_transmission_.size())
{
if (identifier_buffer_.size() >= start_of_transmission_.size()) {
current_state_ = DataReceptionState::kWaiting; // Enter waiting state
ESP_LOGI(kLogTag, "Entering Waiting state");
}
@@ -301,8 +275,7 @@ namespace audio_wifi_config
case DataReceptionState::kWaiting:
// Waiting state, possibly waiting for transmission end
if (identifier_buffer_.size() >= start_of_transmission_.size())
{
if (identifier_buffer_.size() >= start_of_transmission_.size()) {
std::vector<uint8_t> identifier_snapshot(identifier_buffer_.begin(), identifier_buffer_.end());
if (identifier_snapshot == start_of_transmission_)
{
@@ -315,11 +288,9 @@ namespace audio_wifi_config
case DataReceptionState::kReceiving:
bit_buffer_.push_back(bit);
if (identifier_buffer_.size() >= end_of_transmission_.size())
{
if (identifier_buffer_.size() >= end_of_transmission_.size()) {
std::vector<uint8_t> identifier_snapshot(identifier_buffer_.begin(), identifier_buffer_.end());
if (identifier_snapshot == end_of_transmission_)
{
if (identifier_snapshot == end_of_transmission_) {
current_state_ = DataReceptionState::kInactive; // Enter inactive state
// Convert bits to bytes
@@ -328,22 +299,18 @@ namespace audio_wifi_config
uint8_t received_checksum = 0;
size_t minimum_length = 0;
if (enable_checksum_validation_)
{
if (enable_checksum_validation_) {
// If checksum is required, last byte is checksum
minimum_length = 1 + start_of_transmission_.size() / 8;
if (bytes.size() >= minimum_length)
{
received_checksum = bytes[bytes.size() - start_of_transmission_.size() / 8 - 1];
}
}
else
{
} else {
minimum_length = start_of_transmission_.size() / 8;
}
if (bytes.size() < minimum_length)
{
if (bytes.size() < minimum_length) {
ClearBuffers();
ESP_LOGW(kLogTag, "Data too short, clearing buffer");
return false; // Data too short, return failure
@@ -356,11 +323,9 @@ namespace audio_wifi_config
std::string result(text_bytes.begin(), text_bytes.end());
// Validate checksum if required
if (enable_checksum_validation_)
{
if (enable_checksum_validation_) {
uint8_t calculated_checksum = CalculateChecksum(result);
if (calculated_checksum != received_checksum)
{
if (calculated_checksum != received_checksum) {
// Checksum mismatch
ESP_LOGW(kLogTag, "Checksum mismatch: expected %d, got %d",
received_checksum, calculated_checksum);
@@ -372,9 +337,7 @@ namespace audio_wifi_config
ClearBuffers();
decoded_text = result;
return true; // Return success
}
else if (bit_buffer_.size() >= max_bit_buffer_size_)
{
} else if (bit_buffer_.size() >= max_bit_buffer_size_) {
// If not end identifier and bit buffer is full, reset
ClearBuffers();
ESP_LOGW(kLogTag, "Buffer overflow, clearing buffer");
@@ -388,19 +351,16 @@ namespace audio_wifi_config
return false;
}
std::vector<uint8_t> AudioDataBuffer::ConvertBitsToBytes(const std::vector<uint8_t> &bits) const
{
std::vector<uint8_t> AudioDataBuffer::ConvertBitsToBytes(const std::vector<uint8_t> &bits) const {
std::vector<uint8_t> bytes;
// Ensure number of bits is a multiple of 8
size_t complete_bytes_count = bits.size() / 8;
bytes.reserve(complete_bytes_count);
for (size_t i = 0; i < complete_bytes_count; ++i)
{
for (size_t i = 0; i < complete_bytes_count; ++i) {
uint8_t byte_value = 0;
for (size_t j = 0; j < 8; ++j)
{
for (size_t j = 0; j < 8; ++j) {
byte_value |= bits[i * 8 + j] << (7 - j);
}
bytes.push_back(byte_value);

View File

@@ -19,7 +19,8 @@ const size_t kWindowSize = 64;
namespace audio_wifi_config
{
// Main function to receive WiFi credentials through audio signal
void ReceiveWifiCredentialsFromAudio(Application *app, WifiConfigurationAp *wifi_ap);
void ReceiveWifiCredentialsFromAudio(Application *app, WifiConfigurationAp *wifi_ap, Display *display,
size_t input_channels = 1);
/**
* Goertzel algorithm implementation for single frequency detection

View File

@@ -52,7 +52,14 @@ void WifiBoard::EnterWifiConfigMode() {
application.Alert(Lang::Strings::WIFI_CONFIG_MODE, hint.c_str(), "", Lang::Sounds::P3_WIFICONFIG);
#if CONFIG_USE_ACOUSTIC_WIFI_PROVISIONING
audio_wifi_config::ReceiveWifiCredentialsFromAudio(&application, &wifi_ap);
auto display = Board::GetInstance().GetDisplay();
auto codec = Board::GetInstance().GetAudioCodec();
int channel = 1;
if (codec) {
channel = codec->input_channels();
}
ESP_LOGI(TAG, "Start receiving WiFi credentials from audio, input channels: %d", channel);
audio_wifi_config::ReceiveWifiCredentialsFromAudio(&application, &wifi_ap, display, channel);
#endif
// Wait forever until reset after configuration