Add power management for ESP32S3-Korvo2-V3 board (#1591)

Introduces PowerManager and integrates it into the ESP32S3-Korvo2-V3 board class to monitor battery level, charging status, and manage power save mode. Adds power_manager.h with battery ADC reading, calibration, and event callbacks. Updates board initialization to support power management and power save timer functionality.
This commit is contained in:
Kevincoooool
2025-12-22 20:33:02 +08:00
committed by GitHub
parent f501a5f440
commit 5113a5f4bb
2 changed files with 291 additions and 1 deletions

View File

@@ -14,6 +14,8 @@
#include <driver/i2c_master.h>
#include <driver/spi_common.h>
#include "esp32_camera.h"
#include "power_manager.h"
#include "power_save_timer.h"
#define TAG "esp32s3_korvo2_v3"
/* ADC Buttons */
@@ -59,6 +61,24 @@ private:
LcdDisplay* display_;
esp_io_expander_handle_t io_expander_ = NULL;
Esp32Camera* camera_;
PowerSaveTimer* power_save_timer_;
PowerManager* power_manager_;
void InitializePowerManager() {
// PowerManager需要复用按钮的ADC句柄所以在InitializeButtons之后调用
// 传入按钮的ADC句柄指针让PowerManager复用
power_manager_ = new PowerManager(GPIO_NUM_NC, &bsp_adc_handle);
}
void InitializePowerSaveTimer() {
power_save_timer_ = new PowerSaveTimer(-1, 60);
power_save_timer_->OnEnterSleepMode([this]() {
GetDisplay()->SetPowerSaveMode(true);
});
power_save_timer_->OnExitSleepMode([this]() {
GetDisplay()->SetPowerSaveMode(false);
});
power_save_timer_->SetEnabled(true);
}
void InitializeI2c() {
// Initialize I2C peripheral
@@ -375,12 +395,14 @@ private:
public:
Esp32S3Korvo2V3Board() : boot_button_(BOOT_BUTTON_GPIO) {
ESP_LOGI(TAG, "Initializing esp32s3_korvo2_v3 Board");
InitializePowerSaveTimer();
InitializeI2c();
I2cDetect();
InitializeTca9554();
InitializeCamera();
InitializeSpi();
InitializeButtons();
InitializeButtons(); // 先初始化按钮创建ADC1句柄
InitializePowerManager(); // 后初始化PowerManager复用ADC1句柄
#ifdef LCD_TYPE_ILI9341_SERIAL
InitializeIli9341Display();
#else
@@ -411,6 +433,24 @@ public:
virtual Camera* GetCamera() override {
return camera_;
}
virtual bool GetBatteryLevel(int& level, bool& charging, bool& discharging) override {
static bool last_discharging = false;
charging = power_manager_->IsCharging();
discharging = power_manager_->IsDischarging();
if (discharging != last_discharging) {
power_save_timer_->SetEnabled(discharging);
last_discharging = discharging;
}
level = power_manager_->GetBatteryLevel();
return true;
}
virtual void SetPowerSaveLevel(PowerSaveLevel level) override {
if (level != PowerSaveLevel::LOW_POWER) {
power_save_timer_->WakeUp();
}
WifiBoard::SetPowerSaveLevel(level);
}
};
DECLARE_BOARD(Esp32S3Korvo2V3Board);

View File

@@ -0,0 +1,250 @@
#pragma once
#include <vector>
#include <functional>
#include <esp_timer.h>
#include <driver/gpio.h>
#include <esp_adc/adc_oneshot.h>
#include <esp_adc/adc_cali.h>
#include <esp_adc/adc_cali_scheme.h>
class PowerManager {
private:
esp_timer_handle_t timer_handle_;
std::function<void(bool)> on_charging_status_changed_;
std::function<void(bool)> on_low_battery_status_changed_;
gpio_num_t charging_pin_ = GPIO_NUM_NC;
std::vector<uint16_t> adc_values_;
uint32_t battery_level_ = 0;
bool is_charging_ = false;
bool is_low_battery_ = false;
int ticks_ = 0;
const int kBatteryAdcInterval = 60;
const int kBatteryAdcDataCount = 3;
const int kLowBatteryLevel = 20;
adc_oneshot_unit_handle_t adc_handle_;
bool adc_handle_owned_ = false; // 标记ADC句柄是否由本类创建
adc_cali_handle_t adc_cali_handle_ = nullptr; // ADC校准句柄
void CheckBatteryStatus() {
// Get charging status
bool new_charging_status = gpio_get_level(charging_pin_) == 1;
if (new_charging_status != is_charging_) {
is_charging_ = new_charging_status;
if (on_charging_status_changed_) {
on_charging_status_changed_(is_charging_);
}
ReadBatteryAdcData();
return;
}
// 如果电池电量数据不足,则读取电池电量数据
if (adc_values_.size() < kBatteryAdcDataCount) {
ReadBatteryAdcData();
return;
}
// 如果电池电量数据充足,则每 kBatteryAdcInterval 个 tick 读取一次电池电量数据
ticks_++;
if (ticks_ % kBatteryAdcInterval == 0) {
ReadBatteryAdcData();
}
}
void ReadBatteryAdcData() {
int adc_raw = 0;
int voltage_mv = 0; // ADC校准后的电压mV
// 多次采样取平均,提高稳定性
uint32_t adc_sum = 0;
const int sample_count = 10;
for (int i = 0; i < sample_count; i++) {
int temp_raw = 0;
ESP_ERROR_CHECK(adc_oneshot_read(adc_handle_, ADC_CHANNEL_5, &temp_raw));
adc_sum += temp_raw;
vTaskDelay(pdMS_TO_TICKS(10)); // 每次采样间隔10ms
}
adc_raw = adc_sum / sample_count;
// 使用ADC校准获取准确电压
if (adc_cali_handle_) {
ESP_ERROR_CHECK(adc_cali_raw_to_voltage(adc_cali_handle_, adc_raw, &voltage_mv));
} else {
// 如果没有校准,使用线性计算
voltage_mv = (int)(adc_raw * 3300.0f / 4095.0f);
}
// 根据分压比计算实际电池电压
// 电路分压比: R21/(R20+R21) = 100K/300K = 1/3
// 实际电池电压 = ADC测量电压 × 3
int battery_voltage_mv = voltage_mv * 3;
// 将电压值添加到队列中用于平滑
adc_values_.push_back(battery_voltage_mv);
if (adc_values_.size() > kBatteryAdcDataCount) {
adc_values_.erase(adc_values_.begin());
}
uint32_t average_voltage = 0;
for (auto value : adc_values_) {
average_voltage += value;
}
average_voltage /= adc_values_.size();
// 定义电池电量区间基于实际电池电压单位mV
const struct {
uint16_t voltage_mv; // 电池电压mV
uint8_t level; // 电量百分比
} levels[] = {
{3500, 0}, // 3.5V
{3640, 20}, // 3.64V
{3760, 40}, // 3.76V
{3880, 60}, // 3.88V
{4000, 80}, // 4.0V
{4200, 100} // 4.2V
};
// 低于最低值时
if (average_voltage < levels[0].voltage_mv) {
battery_level_ = 0;
}
// 高于最高值时
else if (average_voltage >= levels[5].voltage_mv) {
battery_level_ = 100;
} else {
// 线性插值计算中间值
for (int i = 0; i < 5; i++) {
if (average_voltage >= levels[i].voltage_mv && average_voltage < levels[i+1].voltage_mv) {
float ratio = static_cast<float>(average_voltage - levels[i].voltage_mv) /
(levels[i+1].voltage_mv - levels[i].voltage_mv);
battery_level_ = levels[i].level + ratio * (levels[i+1].level - levels[i].level);
break;
}
}
}
// Check low battery status
if (adc_values_.size() >= kBatteryAdcDataCount) {
bool new_low_battery_status = battery_level_ <= kLowBatteryLevel;
if (new_low_battery_status != is_low_battery_) {
is_low_battery_ = new_low_battery_status;
if (on_low_battery_status_changed_) {
on_low_battery_status_changed_(is_low_battery_);
}
}
}
ESP_LOGI("PowerManager", "ADC raw: %d, ADC voltage: %dmV, Battery: %ldmV (%.2fV), level: %ld%%",
adc_raw, voltage_mv, average_voltage, average_voltage/1000.0f, battery_level_);
}
public:
// 构造函数使用外部ADC句柄用于复用已存在的ADC
PowerManager(gpio_num_t pin, adc_oneshot_unit_handle_t* external_adc_handle = nullptr)
: charging_pin_(pin), adc_handle_owned_(false) {
if(charging_pin_ != GPIO_NUM_NC){
// 初始化充电引脚
gpio_config_t io_conf = {};
io_conf.intr_type = GPIO_INTR_DISABLE;
io_conf.mode = GPIO_MODE_INPUT;
io_conf.pin_bit_mask = (1ULL << charging_pin_);
io_conf.pull_down_en = GPIO_PULLDOWN_DISABLE;
io_conf.pull_up_en = GPIO_PULLUP_DISABLE;
gpio_config(&io_conf);
}
// 创建电池电量检查定时器
esp_timer_create_args_t timer_args = {
.callback = [](void* arg) {
PowerManager* self = static_cast<PowerManager*>(arg);
self->CheckBatteryStatus();
},
.arg = this,
.dispatch_method = ESP_TIMER_TASK,
.name = "battery_check_timer",
.skip_unhandled_events = true,
};
ESP_ERROR_CHECK(esp_timer_create(&timer_args, &timer_handle_));
ESP_ERROR_CHECK(esp_timer_start_periodic(timer_handle_, 1000000));
// 初始化或复用 ADC
if (external_adc_handle != nullptr && *external_adc_handle != nullptr) {
// 复用外部ADC句柄
adc_handle_ = *external_adc_handle;
adc_handle_owned_ = false;
} else {
// 创建新的ADC句柄
adc_oneshot_unit_init_cfg_t init_config = {
.unit_id = ADC_UNIT_1, // GPIO6 对应 ADC1
.ulp_mode = ADC_ULP_MODE_DISABLE,
};
ESP_ERROR_CHECK(adc_oneshot_new_unit(&init_config, &adc_handle_));
adc_handle_owned_ = true;
}
// 配置ADC通道
adc_oneshot_chan_cfg_t chan_config = {
.atten = ADC_ATTEN_DB_12,
.bitwidth = ADC_BITWIDTH_12,
};
ESP_ERROR_CHECK(adc_oneshot_config_channel(adc_handle_, ADC_CHANNEL_5, &chan_config)); // GPIO6 = ADC1_CHANNEL_5
// 初始化ADC校准
adc_cali_curve_fitting_config_t cali_config = {
.unit_id = ADC_UNIT_1,
.chan = ADC_CHANNEL_5,
.atten = ADC_ATTEN_DB_12,
.bitwidth = ADC_BITWIDTH_12,
};
esp_err_t ret = adc_cali_create_scheme_curve_fitting(&cali_config, &adc_cali_handle_);
if (ret == ESP_OK) {
ESP_LOGI("PowerManager", "ADC calibration initialized successfully");
} else {
ESP_LOGW("PowerManager", "ADC calibration failed, using linear calculation");
adc_cali_handle_ = nullptr;
}
}
~PowerManager() {
if (timer_handle_) {
esp_timer_stop(timer_handle_);
esp_timer_delete(timer_handle_);
}
// 删除ADC校准句柄
if (adc_cali_handle_) {
adc_cali_delete_scheme_curve_fitting(adc_cali_handle_);
}
// 只有当ADC句柄是本类创建的时候才删除
if (adc_handle_ && adc_handle_owned_) {
adc_oneshot_del_unit(adc_handle_);
}
}
bool IsCharging() {
// 如果电量已经满了,则不再显示充电中
if (battery_level_ == 100) {
return false;
}
return is_charging_;
}
bool IsDischarging() {
// 没有区分充电和放电,所以直接返回相反状态
return !is_charging_;
}
uint8_t GetBatteryLevel() {
return battery_level_;
}
void OnLowBatteryStatusChanged(std::function<void(bool)> callback) {
on_low_battery_status_changed_ = callback;
}
void OnChargingStatusChanged(std::function<void(bool)> callback) {
on_charging_status_changed_ = callback;
}
};